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4 Decision making in programs 

Many computer programs require decisions to be made, depending on the data entered.  In this 

chapter we will develop some programs in which choices have to be made during data processing.  

The first example asks you to write a program to decide the grades which will be awarded to 

students in their course assessment: 

 

Students' work is assessed at the end of the first year of a two year course, and is 

awarded a grade: 

 70% or over is a Distinction 

 60% or over, but less than 70%, is a Merit 

 40% or over, but less than 60%, is a Pass 

 less than 40% is a Fail 

Students who fail are allowed to resubmit their work, and must achieve a Pass grade 

before continuing to the second year of the course.  However, the mark awarded for 

the second attempt will be limited to a maximum of 40%, which is a bare pass. 

A program is required which will input: 

 the student's name 

 the mark awarded 

 whether this is a first or second submission 

The program should then output: 

 the student's name 

 the mark awarded, restricted to a maximum of 40% for a second submission 

 the grade awarded.  

 

 

This program involves some complex processing, so it is a good plan to begin by producing a 

flowchart.  A possible design is shown on the next page: 

 We begin by inputting the student’s name, percentage mark, and whether this is the first or 

second submission of their work. 

 In the case of a second submission, any mark above 40% must be reduced to 40% as a 

penalty for requiring two attempts.  

 The program then checks the mark and decides the corresponding grade. 

 Finally, the required information is output, with the mark adjusted if necessary for a second 

submission. 
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We can now begin the programming. 

Close all projects, then set up a new project.  Give this the name studentGrades, and ensure that the 

Create Main Class option is not selected: 

 

 

 

 

 

 

 

 

 

 

Click the Finish button to go to the NetBeans editing page.   Right-click on the studentGrades 

project, and select New / JFrame Form.  Give the Class Name as studentGrades, and the Package as 

studentGradesPackage: 

  

 

 

 

 

 

 

 

Click the Finish button to return to the NetBeans editing screen. 

 Right-click on the form, and select Set layout / Absolute layout. 

 Go to the Properties window on the bottom right of the screen and click the Code tab.  

Select the option:  Form Size Policy / Generate pack() / Generate Resize code. 

 Click the Source tab above the design window to open the program code.  Locate the main 

method.  Use the + icon to open the program lines and change the parameter “Nimbus” to 

“Windows”. 

Run the program and accept the main class which is offered.  Check that a blank window appears 

and has the correct size and colour scheme. Close the program window to return to the NetBeans 

editing screen. 
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Begin by placing labels and text fields on the form for entering the student’s name and mark.  

Rename the text fields as txtStudentName and txtMark: 

 

 

 

 

 

 

 

 

 

 

 

We can use a drop-down list for selecting first or second submission of the student’s work.  Locate 

the Combo Box component in the palette, then drag and drop this on the form.  Rename the  

combo box as cmbSubmission. 

Go to the model property and enter the words “first” and “second”, separated by a comma. 

Drag and drop a label to the left of the combo box, and set the caption to “submission”: 
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Complete the form by adding a button and text area.  Change the button caption to “Grade”, and 

give this the name btnGrade.  Rename the text area as txtGrade: 

 

 

 

 

 

 

 

 

 

 

 

We can now begin the program code.   

Double click the Grade button to create a method.  Add local variables to store the student mark, 

first or second submission, and the grade description awarded.  

It will be helpful to display an error message box if the student mark is not entered in a correct 

integer format.  Add a try ... catch block to do this: 
 

   private void btnGradeActionPerformed(java.awt.event.ActionEvent evt) {                                          

    
   int studentMark; 
   String grade; 
   String submission; 
        
   try 
   { 
       studentMark=Integer.parseInt(txtMark.getText()); 
   } 
   catch(NumberFormatException e) 
   { 
           JOptionPane.showMessageDialog(studentGrades.this, "Incorrect % mark"); 
   } 
 
}                                       

 

Go to the start of the program and add the code to create the message box: 

 

package studentGradesPackage; 
 
import javax.swing.JOptionPane; 
 
public class studentGrades extends javax.swing.JFrame { 
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Run the program.  Enter a correct integer number as the student mark and click the Grade button.  
This should be accepted by the program.  Now enter a number in an incorrect format and the error 
message box should be displayed:     
 
 
 
 
 

 

 

 

 

 

 

 

Close the program and return to the editing screen.  Another possible input error is that the mark 

entered is outside the range for a percentage.  We can add a range check as validation.  Notice the 

double vertical line symbol “ || “ which provides the logical operation “ OR “:      
 
 
        try 
        { 
           studentMark=Integer.parseInt(txtMark.getText()); 
 
           if (studentMark<0 || studentMark>100) 
           { 
               JOptionPane.showMessageDialog(studentGrades.this,  
                                                      "% mark must be between 0 and 100"); 
           } 
            
         } 
         catch(NumberFormatException e) 
         { 
 
 
 

Run the program and enter a mark which is outside the percentage range 0 – 100.  An error message 
should be displayed: 
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Close the program and return to the editing screen. 

The next stage of the algorithm is to check for a second submission of the student’s work.  In this 

case, the mark that is awarded must be limited to a maximum of 40%.  Add code to carry out this 

check. 

We will also start to build up a text string for display of the results in the text area: 

 

 try 
        { 
           studentMark=Integer.parseInt(txtMark.getText()); 
           if (studentMark<0 || studentMark>100) 
           { 
               JOptionPane.showMessageDialog(studentGrades.this,  
                                          "% mark must be between 0 and 100"); 
           } 
 
           else 
           { 
               String s=""; 
               s += txtStudentName.getText();                
               submission = (String)cmbSubmission.getSelectedItem();              
               if (submission.equals("second")) 
               { 
                   if (studentMark>40) 
                   { 
                       studentMark=40; 
                   } 
               } 
               s +="\nMark: "+Integer.toString(studentMark)+"%"; 
               txtGrade.setText(s); 
           }  
        
        } 
        catch(NumberFormatException e)  
        { 

 

Run the program.  Check that student names and marks are displayed correctly, with the mark 

limited to 40% in the case of a second submission: 
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Close the program and return to the editing screen.  The final stage is to decide the grade that 
will be awarded.  Add conditional IF ... THEN ... ELSE statements to do this. 
   
 
                
               if (submission.equals("second")) 
               { 
                   if (studentMark>40) 
                   { 
                       studentMark=40; 
                   } 
               } 
               s +="\nMark: "+Integer.toString(studentMark)+"%"; 
                
               if (studentMark>=70) 
               { 
                   grade="Distinction"; 
               } 
               else 
               { 
                   if (studentMark>=60) 
                   { 
                       grade="Merit"; 
                   } 
                   else  
                   {     
                       if (studentMark>=40) 
                       { 
                           grade="Pass"; 
                       } 
                       else 
                       { 
                           grade="Fail"; 
                       } 
                   } 
               }                
               s +="\nGrade: "+ grade; 
 
               txtGrade.setText(s); 
           }         
        } 
        catch(NumberFormatException e) 
        { 

 

 

Notice that indenting has been used in the IF … THEN … ELSE blocks.  After each opening bracket, 

the following lines of code are moved to the right by about three spaces.  When the end of the 

conditional block is reached, the closing bracket is moved back to the same indent position as the 

opening bracket. 

Using indentation correctly can make the structure of the program easier to understand, and 

reduces the chances of an error due to an incorrect number of closing brackets. 
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Run the program.  Check that correct grades are awarded for a range of different marks:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Close the program and return to the NetBeans editing page. 

For our next project we will produce a program to calculate the change to be given to customers 

when they make payment in a shop: 

 

A program is required which will specify the coins which should be given in change, 

up to a maximum of £5.00, when payment is made for purchases.  The minimum 

number of coins should be given.   

Coins may be chosen from: 1 penny, 2 pence, 5 pence, 10 pence, 20 pence, 50 pence, 

1 pound, 2 pounds. 

 

This is a slightly more difficult problem than it first seems: 

 Some coins can only be given in change once – for example, two 5p coins could be replaced 

by a 10p coin. 

 Some coins may have to be given twice – for example, 40p change can only be given as two 

20p coins. 

A possible design for the algorithm is given in the flow chart on the next page.  The overall strategy is 

to find the change due in pence, then reduce the amount of pence remaining as each possible coin is 

issued as change.  By starting with the highest value coin, the minimum number of coins should be 

given to the customer as change. 
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Close all projects, then set up a new project.  Give this the name coins, and ensure that the Create 

Main Class option is not selected: 

 

 

 

 

 

 

 

 

 

 

Click the Finish button to return to the NetBeans editing page.   Right-click on the coins project, and 

select New / JFrame Form.  Give the Class Name as coins, and the Package as coinsPackage: 

  

 

 

 

 

 

 

 

 

Return to the NetBeans editing screen. 

 Right-click on the form, and select Set layout / Absolute layout. 

 Go to the Properties window on the bottom right of the screen and click the Code tab.  

Select the option:  Form Size Policy / Generate pack() / Generate Resize code. 

 Click the Source tab above the design window to open the program code.  Locate the main 

method.  Use the + icon to open the program lines and change the parameter “Nimbus” to 

“Windows”. 

Run the program and accept the main class which is offered.  Check that a blank window appears 

and has the correct size and colour scheme. 
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Close the program and return to the editing screen.  Click the Design tab to open the form layout 

view. 

 Add labels and text fields for the cost of the items purchased and the amount paid by the 

customer.  Rename the text fields as txtTotalCost and txtAmountPaid. 

 Add a button with the caption “Calculate change due”, and rename this as 

btnCalculateChange. 

 Add a label and text field to display the change due.  Rename the text field as 

txtChangeDue.   

 Finally, add a text area for display of the coins to be issued as change.  Name this as 

txtCoinList: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Double click the “Calculate change due” button to create a method.  Add local variables to store 

amounts of money, and a try … catch block for error trapping if an incorrect number is entered.   

 

private void btnCalculateChangeActionPerformed(java.awt.event.ActionEvent evt) {  
                                                   

        double totalCost, amountPaid, changeDue; 
        int change=0; 
 
        try 
        { 
            totalCost=Double.parseDouble(txtTotalCost.getText()); 
            amountPaid=Double.parseDouble(txtAmountPaid.getText()); 
        } 
        catch(NumberFormatException e) 
        { 
            JOptionPane.showMessageDialog(coins.this, "Incorrect number format"); 
        } 
 
    }                                                   
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Go to the start of the program and add the code to create the message box: 

 

    package coinsPackage; 
 
    import javax.swing.JOptionPane; 
 
    public class coins extends javax.swing.JFrame { 
 
 
 

Run the program and check that incorrect number input is detected: 

 

 

 

 

 

 

 

 

 

 

Close the program and return to the editing screen. 

We should now check that the customer has paid sufficient money for the items purchased, and give 

an error message if this is not the case.  Add the lines of code below: 

 

        try 
        { 
            totalCost=Double.parseDouble(txtTotalCost.getText()); 
            amountPaid=Double.parseDouble(txtAmountPaid.getText()); 
 
            changeDue=amountPaid-totalCost;            
            
            if (changeDue<0) 
            { 
                JOptionPane.showMessageDialog(coins.this, "Insufficient payment"); 
            } 
            else 
            {  
                txtChangeDue.setText(String.format("%.2f", changeDue)); 
            } 
 
        } 
        catch(NumberFormatException e) 
        { 
            JOptionPane.showMessageDialog(coins.this, "Incorrect number format"); 
        } 
    }                                                   
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Run the program.  Test the cases where sufficient money has or has not been paid:  

 

 

 

 

 

 

 

 

 

 

 

Close the program and return to the editing screen. 

We can now start work on the calculation algorithm:  

 Begin by converting the amount of change due into an integer number of pence. 

 The highest value coin available is £2. There is a possibility that two of these coins will be 

needed in change, so a WHILE… loop will be used.  A coin will be dispensed each time 

around the loop until the remaining change is less than 200 pence. 

 The next coin is £1.  In this case, a maximum of one coin could be included in the change, so 

no loop is needed. Instead, we will use an IF… condition: 

 
            if (changeDue<0) 
            { 
                JOptionPane.showMessageDialog(coins.this, "Insufficient payment"); 
            } 
            else 
            { 
                txtChangeDue.setText(String.format("%.2f", changeDue)); 
      
                change=(int) Math.round(changeDue*100); 
                String s="";                        
                while(change>=200) 
                { 
                    s += " £2 coin \n"; 
                    change -= 200; 
                }                 
                if (change>=100) 
                { 
                    s += " £1 coin \n"; 
                    change -= 100; 
                }                         
                txtCoinList.setText(s); 
 
            } 
        } 
        catch(NumberFormatException e) 
       { 
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Run the program.  Test that the correct combination of £2 and £1 coins are given for different 
amounts of change due:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Close the program and return to the editing screen.  Add the blocks of code to issue the remaining 
coins:  50p, 20p, 10p, 5p, 2p, 1p, as shown on the next page. 
 
Run the program.  Carry out tests for purchases requiring various amounts of change up to £5.  
Confirm that in each case the amount of change is correct, and that the minimum number of coins 
have been used: 
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            if (changeDue<0) 
            { 
                JOptionPane.showMessageDialog(coins.this, "Insufficient payment"); 
            } 
            else 
            { 
                txtChangeDue.setText(String.format("%.2f", changeDue)); 
                change=(int) Math.round(changeDue*100); 
                String s="";                          
                while(change>=200) 
                { 
                    s += " £2 coin \n"; 
                    change -= 200; 
                } 
                if (change>=100) 
                { 
                    s += " £1 coin \n"; 
                    change -= 100; 
                }    
      
                if (change>=50) 
                { 
                    s += " 50p coin \n"; 
                    change -= 50; 
                }     
                while (change>=20) 
                { 
                    s += " 20p coin \n"; 
                    change -= 20; 
                }     
                if (change>=10) 
                { 
                    s += " 10p coin \n"; 
                    change -= 10; 
                }    
                if (change>=5) 
                { 
                    s += " 5p coin \n"; 
                    change -= 5; 
                }    
                while (change>=2) 
                { 
                    s += " 2p coin \n"; 
                    change -= 2; 
                }     
                if (change==1) 
                { 
                    s += " 1p coin \n";             
                }  
   
                txtCoinList.setText(s); 
            } 
        } 
        catch(NumberFormatException e) 
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The final program in this chapter asks you to carry out a common calculation made by doctors and 

nurses: 

 

A program is required which will calculate Body Mass Index (BMI).  This is a 

value used by health professionals to assess whether a person has a healthy 

weight for their height, or is overweight or underweight. 

 

The weight and height of a person is to be entered either in metric or imperial 

units (kilograms and metres, or stones/pounds and feet/inches), along with 

gender.  

 

Body mass index is calculated using the formula: 

𝐵𝑀𝐼 =  
𝑤𝑒𝑖𝑔ℎ𝑡 (𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠)

[ℎ𝑒𝑖𝑔ℎ𝑡(𝑚𝑒𝑡𝑟𝑒𝑠)]2
 

 

The program should display the Body Mass Index value, and provide a message 

to indicate whether the person's weight is within the healthy range, overweight or 

underweight.   

 

BMI ranges Male Female 

Underweight < 20 < 19 

Healthy range 20 – 25 19-24 

Overweight > 25 > 24 

 

 

 

The input values required for the calculation will be the height and weight of the person, and their 

gender.   

Body mass index is calculated using metric units of metres and kilograms.  We must provide an 

option  for the heights and weights be entered as feet/inches and stones/pounds in the imperial 

system, then carry out a conversion: 

                                              1 inch = 0.0254 metres 

                                              1 pound = 0.454 kilogram 

 

A possible algorithm for the program is given in the flowchart below. 
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Close all projects, then set up a New Project.  Give this the name BMI, and ensure that the Create 

Main Class option is not selected. 

Return to the NetBeans editing page.   Right-click on the BMI project, and select New / JFrame Form.  

Give the Class Name as BMI, and the Package as BMIpackage: 

  

 

 

 

 

 

 

 

 

Click the Finish button to return to the NetBeans editing screen. 

 Right-click on the form, and select Set layout / Absolute layout. 

 Go to the Properties window on the bottom right of the screen and click the Code tab.  

Select the option:  Form Size Policy / Generate pack() / Generate Resize code. 

 Click the Source tab above the design window to open the program code.  Locate the main 

method.  Use the + icon to open the program lines and change the parameter “Nimbus” to 

“Windows”. 

Run the program and accept the main class which is offered.  Check that a blank window appears 

and has the correct size and colour scheme.  Close the program and return to the NetBeans editing 

screen.  Click the Design tab to move to the form layout view. 

Select the Combo Box component from the palette and drag and drop this on the form.  Rename the 

component as cmbGender.  Go to the model property, and set the values as: 

                                                                                male, female 
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Add labels and text fields for entry of the person’s height.  Rename the text fields as txtMetres, 

txtFeet and txtInches.   

We will allow the user to select either metric or imperial units for entry of the height.  Let us first 

assume that metric units will be used, so remove the tick from the editable property of the feet and 

inches text fields. 

 

 

 

 

 

 

 

 

 

 

Select the Button Group component from the palette and drag and drop this on the form.  This is an 

invisible component, so nothing appears on the form.  Go to the Properties window and select the 

Code tab, then reset the Variable Name to btnHeightUnits: 

 

 

  

 

 

 

Add two radio buttons to the form and rename these as rbMetricHeight and rbImperialHeight.  Set 

the buttonGroup property for each of these buttons to btnHeightUnits.  This will ensure that the 

buttons operate together so only one of the options can be selected.  

Add a tick to the selected property for the rbMetricHeight button: 
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Create a set of components in a similar way for the entry of the person’s weight: 

 Add labels and text fields.  Name the text fields as txtKilos, txtStones and txtPounds.  

Remove the ticks from the editable property of the stones and pounds text fields. 

 Add a buttonGroup component, and rename this as btnWeightUnits. 

 Add two radio buttons and rename these as rbMetricWeight and rbImperialWeight. Set the 

buttonGroup property for each of these buttons to btnWeightUnits.  Add a tick to the 

selected property for the rbMetricWeight button: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Complete the form by adding a button with the caption “Calculate BMI”, and a text area.  Rename 

these components as btnCalculate and txtOutput: 
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When the program is running, it should be possible for the user to select either metric or imperial 

units for entry of height and weight. When a change is made between metric and imperial units, the 

appropriate text fields should become editable.  We will arrange this now. 

Select the rbMetricHeight radio button.  Open the Events tab in the Properties window and locate 

the stateChanged event.  Select rbMetricHeightStateChanged from the drop down list: 

 

 

 

 

 

 

 

 

Add lines of code which will detect which of the Height radio buttons is selected, and set the 

editable properties of the text fields accordingly.  We will also delete any previous text entry when a 

text field becomes un-editable. 

 

 

    private void rbMetricHeightStateChanged(javax.swing.event.ChangeEvent evt) { 
 
        if(rbMetricHeight.isSelected()==true) 
        { 
            txtFeet.setText(""); 
            txtInches.setText(""); 
 
            txtMetres.setEditable(true); 
            txtFeet.setEditable(false); 
            txtInches.setEditable(false); 
        } 
        else 
        { 
            txtMetres.setText(""); 
 
            txtMetres.setEditable(false); 
            txtFeet.setEditable(true); 
            txtInches.setEditable(true); 
        } 
 
    } 
 
 

Run the program.  Select the radio button for metric height, and check that a value can be entered 

in the metres text field, whilst the feet and inches text fields are not editable.  Now select the radio 

button for imperial height, and check that the feet and inches fields become editable. 

Close the program and return to the NetBeans screen.  Select the Design tab. 
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Select the rbMetricWeight radio button.  Open the Events tab in the Properties window and locate 

the stateChanged event.  Select rbMetricWeightStateChanged from the drop down list.   

Add program code to the method: 
 

 

   private void rbMetricWeightStateChanged(javax.swing.event.ChangeEvent evt) { 
 
        if(rbMetricWeight.isSelected()==true) 
        { 
            txtStones.setText(""); 
            txtPounds.setText(""); 
 
            txtKilos.setEditable(true); 
            txtStones.setEditable(false); 
            txtPounds.setEditable(false); 
        } 
        else 
        { 
            txtKilos.setText(""); 
 
            txtKilos.setEditable(false); 
            txtStones.setEditable(true); 
            txtPounds.setEditable(true); 
        } 
 
   } 

 

 

Run the program again.  Select the radio button for metric weight, and check that a value can be 

entered in the kilograms text field, whilst the stones and pounds text fields are not editable.  Now 

select the radio button for imperial weight, and check that the stones and pounds fields become 

editable.   

Close the program and return to the NetBeans screen.  Select the Design tab to display the form.  

We can now begin work on calculation of the Body Mass Index.   

Double click the “Calculate BMI” button to create a method.  

Add definitions for local variables which will be needed in the calculation, and for output of the 

results: 

 

    private void btnCalculateActionPerformed(java.awt.event.ActionEvent evt) {                                              
     
        double height, weight; 
        int inches, feet, stones, pounds; 
        int totalInches, totalPounds; 
        String s=""; 
        double BMI; 
        String advice; 
         
    }                                             
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We will add lines of program code to input the person’s height and display this in the text area in the 
output section of the form.  We must consider two situations: 

 If the height is entered in metric units, this can be output directly as metres. 

 If the user chooses to input the height as feet and inches, this must be converted to metres. 
We will firstly calculate the total number of inches, then use a conversion factor: 

                                                                               1 inch = 0.0254 metres 
 
 
 
    private void btnCalculateActionPerformed(java.awt.event.ActionEvent evt) {                                              
        double height, weight; 
        int inches,feet, stones, pounds; 
        int totalInches, totalPounds; 
        String s=""; 
        double BMI; 
        String advice; 
         
        if (rbMetricHeight.isSelected()==true) 
        { 
            height=Double.parseDouble(txtMetres.getText()); 
        } 
        else 
        { 
            inches=Integer.parseInt(txtInches.getText()); 
            feet=Integer.parseInt(txtFeet.getText()); 
            totalInches=feet*12 + inches; 
            height=totalInches* 0.0254; 
        }       
        s += "Height: "+String.format("%.2f", height)+" metres \n"; 
        txtOutput.setText(s); 
 
    }   
 
 
 

Run the program and check that the output of heights is handled correctly:                                           
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Close the program and return to the editing screen.  Add a further section of code to the 

btnCalculateActionPerformed method to enter and display weights, converting from stones and 

pounds to kilograms if necessary: 

 

        if (rbMetricHeight.isSelected()==true) 
        { 
            height=Double.parseDouble(txtMetres.getText()); 
        } 
        else 
        { 
            inches=Integer.parseInt(txtInches.getText()); 
            feet=Integer.parseInt(txtFeet.getText()); 
            totalInches=feet*12 + inches; 
            height=totalInches* 0.0254; 
        } 
        s += "Height: "+String.format("%.2f", height)+" metres \n"; 
         
        if (rbMetricWeight.isSelected()==true) 
        { 
            weight=Double.parseDouble(txtKilos.getText()); 
        } 
        else 
        { 
            stones=Integer.parseInt(txtStones.getText()); 
            pounds=Integer.parseInt(txtPounds.getText()); 
            totalPounds=stones*14 + pounds; 
            weight=totalPounds* 0.454; 
        }     
        s += "Weight: "+String.format("%.1f", weight)+" kilograms \n"; 
           
         
        txtOutput.setText(s); 
    }                                             

 

Run the program and check that the output of weights is correct:                                           
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Close the program and return to the editing screen.   

We now have the height and weight data in the correct metric units for calculation of the Body Mass 
Index.  Add the formula to do this: 
 
 
 
        if (rbMetricWeight.isSelected()==true) 
        { 
            weight=Double.parseDouble(txtKilos.getText()); 
        } 
        else 
        { 
            stones=Integer.parseInt(txtStones.getText()); 
            pounds=Integer.parseInt(txtPounds.getText()); 
            totalPounds=stones*14 + pounds; 
            weight=totalPounds* 0.454; 
        }     
        s += "Weight: "+String.format("%.1f", weight)+" kilograms \n"; 
         
        BMI = weight/(height*height); 
         
         s += "Body Mass Index: "+String.format("%.1f", BMI)+" \n"; 
     
         
        txtOutput.setText(s); 
    }                                             

 

Run the program and test the BMI calculation.  To verify that the program is working correctly, carry 

out the calculations a second time using a calculator or spreadsheet:  
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Close the program and return to the editing screen. 

The final task is to link Body Mass Index and gender, to give advice on whether the person is 

overweight, in the healthy range, or underweight.  This can be done by checking whether “male” or 

“female” is selected in the cmbGender combo box, then using a series of IF...THEN…ELSE commands 

to check BMI value against the specified ranges for overweight, healthy or underweight:  

         
 
         
        BMI = weight/(height*height); 
         
        s += "Body Mass Index: "+String.format("%.1f", BMI)+" \n"; 
     
        if (cmbGender.getSelectedItem().equals("male")) 
        { 
           if (BMI > 25) 
           { 
               advice="Overweight"; 
           } 
           else 
           {  
              if (BMI >=20) 
              { 
                  advice ="Healthy weight"; 
              } 
              else 
              { 
                  advice ="Underweight"; 
              } 
           } 
        } 
        else 
        { 
           if (BMI > 24) 
           { 
               advice="Overweight"; 
           } 
           else  
           { 
               if (BMI >=19) 
               { 
                   advice ="Healthy weight"; 
               } 
               else 
               { 
                   advice ="Underweight"; 
               } 
           }            
        } 
         
        s += advice; 
         
        txtOutput.setText(s); 
    }                                             
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This completes the project.  Run the program and check that correct advice is given for men and 

women with a range of different heights and weights:   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


