
 Chapter 4: Decision making in programs 89

4 Decision making in programs

Many computer programs require decisions to be made, depending on the data entered. In this

chapter we will develop some programs in which choices have to be made during data processing.

The first example asks you to write a program to decide the grades which will be awarded to

students in their course assessment:

Students' work is assessed at the end of the first year of a two year course, and is

awarded a grade:

 70% or over is a Distinction

 60% or over, but less than 70%, is a Merit

 40% or over, but less than 60%, is a Pass

 less than 40% is a Fail

Students who fail are allowed to resubmit their work, and must achieve a Pass grade

before continuing to the second year of the course. However, the mark awarded for

the second attempt will be limited to a maximum of 40%, which is a bare pass.

A program is required which will input:

 the student's name

 the mark awarded

 whether this is a first or second submission

The program should then output:

 the student's name

 the mark awarded, restricted to a maximum of 40% for a second submission

 the grade awarded.

This program involves some complex processing, so it is a good plan to begin by producing a

flowchart. A possible design is shown on the next page:

 We begin by inputting the student’s name, percentage mark, and whether this is the first or

second submission of their work.

 In the case of a second submission, any mark above 40% must be reduced to 40% as a

penalty for requiring two attempts.

 The program then checks the mark and decides the corresponding grade.

 Finally, the required information is output, with the mark adjusted if necessary for a second

submission.

90 Java Programming for A-level Computer Science

mark = 40

mark >40?

grade = Distinction

grade = Merit

start

input student name

input mark

stop

second

submission?

input submission number

mark >=70?

mark >=60?

mark >=40?

output student name

output final mark

output grade

grade = Fail

grade = Pass

Y

N

Y

N

Y

N

Y

N

Y

N

 Chapter 4: Decision making in programs 91

We can now begin the programming.

Close all projects, then set up a new project. Give this the name studentGrades, and ensure that the

Create Main Class option is not selected:

Click the Finish button to go to the NetBeans editing page. Right-click on the studentGrades

project, and select New / JFrame Form. Give the Class Name as studentGrades, and the Package as

studentGradesPackage:

Click the Finish button to return to the NetBeans editing screen.

 Right-click on the form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Click the Source tab above the design window to open the program code. Locate the main

method. Use the + icon to open the program lines and change the parameter “Nimbus” to

“Windows”.

Run the program and accept the main class which is offered. Check that a blank window appears

and has the correct size and colour scheme. Close the program window to return to the NetBeans

editing screen.

92 Java Programming for A-level Computer Science

Begin by placing labels and text fields on the form for entering the student’s name and mark.

Rename the text fields as txtStudentName and txtMark:

We can use a drop-down list for selecting first or second submission of the student’s work. Locate

the Combo Box component in the palette, then drag and drop this on the form. Rename the

combo box as cmbSubmission.

Go to the model property and enter the words “first” and “second”, separated by a comma.

Drag and drop a label to the left of the combo box, and set the caption to “submission”:

 Chapter 4: Decision making in programs 93

Complete the form by adding a button and text area. Change the button caption to “Grade”, and

give this the name btnGrade. Rename the text area as txtGrade:

We can now begin the program code.

Double click the Grade button to create a method. Add local variables to store the student mark,

first or second submission, and the grade description awarded.

It will be helpful to display an error message box if the student mark is not entered in a correct

integer format. Add a try ... catch block to do this:

 private void btnGradeActionPerformed(java.awt.event.ActionEvent evt) {

 int studentMark;
 String grade;
 String submission;

 try
 {
 studentMark=Integer.parseInt(txtMark.getText());
 }
 catch(NumberFormatException e)
 {
 JOptionPane.showMessageDialog(studentGrades.this, "Incorrect % mark");
 }

}

Go to the start of the program and add the code to create the message box:

package studentGradesPackage;

import javax.swing.JOptionPane;

public class studentGrades extends javax.swing.JFrame {

94 Java Programming for A-level Computer Science

Run the program. Enter a correct integer number as the student mark and click the Grade button.
This should be accepted by the program. Now enter a number in an incorrect format and the error
message box should be displayed:

Close the program and return to the editing screen. Another possible input error is that the mark

entered is outside the range for a percentage. We can add a range check as validation. Notice the

double vertical line symbol “ || “ which provides the logical operation “ OR “:

 try
 {
 studentMark=Integer.parseInt(txtMark.getText());

 if (studentMark<0 || studentMark>100)
 {
 JOptionPane.showMessageDialog(studentGrades.this,
 "% mark must be between 0 and 100");
 }

 }
 catch(NumberFormatException e)
 {

Run the program and enter a mark which is outside the percentage range 0 – 100. An error message
should be displayed:

 Chapter 4: Decision making in programs 95

Close the program and return to the editing screen.

The next stage of the algorithm is to check for a second submission of the student’s work. In this

case, the mark that is awarded must be limited to a maximum of 40%. Add code to carry out this

check.

We will also start to build up a text string for display of the results in the text area:

 try
 {
 studentMark=Integer.parseInt(txtMark.getText());
 if (studentMark<0 || studentMark>100)
 {
 JOptionPane.showMessageDialog(studentGrades.this,
 "% mark must be between 0 and 100");
 }

 else
 {
 String s="";
 s += txtStudentName.getText();
 submission = (String)cmbSubmission.getSelectedItem();
 if (submission.equals("second"))
 {
 if (studentMark>40)
 {
 studentMark=40;
 }
 }
 s +="\nMark: "+Integer.toString(studentMark)+"%";
 txtGrade.setText(s);
 }

 }
 catch(NumberFormatException e)
 {

Run the program. Check that student names and marks are displayed correctly, with the mark

limited to 40% in the case of a second submission:

96 Java Programming for A-level Computer Science

Close the program and return to the editing screen. The final stage is to decide the grade that
will be awarded. Add conditional IF ... THEN ... ELSE statements to do this.

 if (submission.equals("second"))
 {
 if (studentMark>40)
 {
 studentMark=40;
 }
 }
 s +="\nMark: "+Integer.toString(studentMark)+"%";

 if (studentMark>=70)
 {
 grade="Distinction";
 }
 else
 {
 if (studentMark>=60)
 {
 grade="Merit";
 }
 else
 {
 if (studentMark>=40)
 {
 grade="Pass";
 }
 else
 {
 grade="Fail";
 }
 }
 }
 s +="\nGrade: "+ grade;

 txtGrade.setText(s);
 }
 }
 catch(NumberFormatException e)
 {

Notice that indenting has been used in the IF … THEN … ELSE blocks. After each opening bracket,

the following lines of code are moved to the right by about three spaces. When the end of the

conditional block is reached, the closing bracket is moved back to the same indent position as the

opening bracket.

Using indentation correctly can make the structure of the program easier to understand, and

reduces the chances of an error due to an incorrect number of closing brackets.

 Chapter 4: Decision making in programs 97

Run the program. Check that correct grades are awarded for a range of different marks:

Close the program and return to the NetBeans editing page.

For our next project we will produce a program to calculate the change to be given to customers

when they make payment in a shop:

A program is required which will specify the coins which should be given in change,

up to a maximum of £5.00, when payment is made for purchases. The minimum

number of coins should be given.

Coins may be chosen from: 1 penny, 2 pence, 5 pence, 10 pence, 20 pence, 50 pence,

1 pound, 2 pounds.

This is a slightly more difficult problem than it first seems:

 Some coins can only be given in change once – for example, two 5p coins could be replaced

by a 10p coin.

 Some coins may have to be given twice – for example, 40p change can only be given as two

20p coins.

A possible design for the algorithm is given in the flow chart on the next page. The overall strategy is

to find the change due in pence, then reduce the amount of pence remaining as each possible coin is

issued as change. By starting with the highest value coin, the minimum number of coins should be

given to the customer as change.

98 Java Programming for A-level Computer Science

stop

start

input order cost

input amount paid

calculate change in pence

change >=

200 pence?
issue £2 coin

change = change – 200p

change >=

100 pence?

issue £1 coin

change = change – 100p

issue 50p coin

change = change – 50p
change >=

50 pence?

change >=

20 pence?

issue 20p coin

change = change – 20p

change >=

10 pence?

issue 10p coin

change = change – 10p

change >=

5 pence?

issue 5p coin

change = change – 5p

change >=

2 pence?

issue 2p coin

change = change – 2p

issue 1p coin
change =

1 penny?

Y

N

Y

N

Y

N

Y

N

Y

N

Y

N

Y

N

Y

N

 Chapter 4: Decision making in programs 99

Close all projects, then set up a new project. Give this the name coins, and ensure that the Create

Main Class option is not selected:

Click the Finish button to return to the NetBeans editing page. Right-click on the coins project, and

select New / JFrame Form. Give the Class Name as coins, and the Package as coinsPackage:

Return to the NetBeans editing screen.

 Right-click on the form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Click the Source tab above the design window to open the program code. Locate the main

method. Use the + icon to open the program lines and change the parameter “Nimbus” to

“Windows”.

Run the program and accept the main class which is offered. Check that a blank window appears

and has the correct size and colour scheme.

100 Java Programming for A-level Computer Science

Close the program and return to the editing screen. Click the Design tab to open the form layout

view.

 Add labels and text fields for the cost of the items purchased and the amount paid by the

customer. Rename the text fields as txtTotalCost and txtAmountPaid.

 Add a button with the caption “Calculate change due”, and rename this as

btnCalculateChange.

 Add a label and text field to display the change due. Rename the text field as

txtChangeDue.

 Finally, add a text area for display of the coins to be issued as change. Name this as

txtCoinList:

Double click the “Calculate change due” button to create a method. Add local variables to store

amounts of money, and a try … catch block for error trapping if an incorrect number is entered.

private void btnCalculateChangeActionPerformed(java.awt.event.ActionEvent evt) {

 double totalCost, amountPaid, changeDue;
 int change=0;

 try
 {
 totalCost=Double.parseDouble(txtTotalCost.getText());
 amountPaid=Double.parseDouble(txtAmountPaid.getText());
 }
 catch(NumberFormatException e)
 {
 JOptionPane.showMessageDialog(coins.this, "Incorrect number format");
 }

 }

 Chapter 4: Decision making in programs 101

Go to the start of the program and add the code to create the message box:

 package coinsPackage;

 import javax.swing.JOptionPane;

 public class coins extends javax.swing.JFrame {

Run the program and check that incorrect number input is detected:

Close the program and return to the editing screen.

We should now check that the customer has paid sufficient money for the items purchased, and give

an error message if this is not the case. Add the lines of code below:

 try
 {
 totalCost=Double.parseDouble(txtTotalCost.getText());
 amountPaid=Double.parseDouble(txtAmountPaid.getText());

 changeDue=amountPaid-totalCost;

 if (changeDue<0)
 {
 JOptionPane.showMessageDialog(coins.this, "Insufficient payment");
 }
 else
 {
 txtChangeDue.setText(String.format("%.2f", changeDue));
 }

 }
 catch(NumberFormatException e)
 {
 JOptionPane.showMessageDialog(coins.this, "Incorrect number format");
 }
 }

102 Java Programming for A-level Computer Science

Run the program. Test the cases where sufficient money has or has not been paid:

Close the program and return to the editing screen.

We can now start work on the calculation algorithm:

 Begin by converting the amount of change due into an integer number of pence.

 The highest value coin available is £2. There is a possibility that two of these coins will be

needed in change, so a WHILE… loop will be used. A coin will be dispensed each time

around the loop until the remaining change is less than 200 pence.

 The next coin is £1. In this case, a maximum of one coin could be included in the change, so

no loop is needed. Instead, we will use an IF… condition:

 if (changeDue<0)
 {
 JOptionPane.showMessageDialog(coins.this, "Insufficient payment");
 }
 else
 {
 txtChangeDue.setText(String.format("%.2f", changeDue));

 change=(int) Math.round(changeDue*100);
 String s="";
 while(change>=200)
 {
 s += " £2 coin \n";
 change -= 200;
 }
 if (change>=100)
 {
 s += " £1 coin \n";
 change -= 100;
 }
 txtCoinList.setText(s);

 }
 }
 catch(NumberFormatException e)
 {

 Chapter 4: Decision making in programs 103

Run the program. Test that the correct combination of £2 and £1 coins are given for different
amounts of change due:

Close the program and return to the editing screen. Add the blocks of code to issue the remaining
coins: 50p, 20p, 10p, 5p, 2p, 1p, as shown on the next page.

Run the program. Carry out tests for purchases requiring various amounts of change up to £5.
Confirm that in each case the amount of change is correct, and that the minimum number of coins
have been used:

104 Java Programming for A-level Computer Science

 if (changeDue<0)
 {
 JOptionPane.showMessageDialog(coins.this, "Insufficient payment");
 }
 else
 {
 txtChangeDue.setText(String.format("%.2f", changeDue));
 change=(int) Math.round(changeDue*100);
 String s="";
 while(change>=200)
 {
 s += " £2 coin \n";
 change -= 200;
 }
 if (change>=100)
 {
 s += " £1 coin \n";
 change -= 100;
 }

 if (change>=50)
 {
 s += " 50p coin \n";
 change -= 50;
 }
 while (change>=20)
 {
 s += " 20p coin \n";
 change -= 20;
 }
 if (change>=10)
 {
 s += " 10p coin \n";
 change -= 10;
 }
 if (change>=5)
 {
 s += " 5p coin \n";
 change -= 5;
 }
 while (change>=2)
 {
 s += " 2p coin \n";
 change -= 2;
 }
 if (change==1)
 {
 s += " 1p coin \n";
 }

 txtCoinList.setText(s);
 }
 }
 catch(NumberFormatException e)

 Chapter 4: Decision making in programs 105

The final program in this chapter asks you to carry out a common calculation made by doctors and

nurses:

A program is required which will calculate Body Mass Index (BMI). This is a

value used by health professionals to assess whether a person has a healthy

weight for their height, or is overweight or underweight.

The weight and height of a person is to be entered either in metric or imperial

units (kilograms and metres, or stones/pounds and feet/inches), along with

gender.

Body mass index is calculated using the formula:

𝐵𝑀𝐼 =
𝑤𝑒𝑖𝑔ℎ𝑡 (𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠)

[ℎ𝑒𝑖𝑔ℎ𝑡(𝑚𝑒𝑡𝑟𝑒𝑠)]2

The program should display the Body Mass Index value, and provide a message

to indicate whether the person's weight is within the healthy range, overweight or

underweight.

BMI ranges Male Female

Underweight < 20 < 19

Healthy range 20 – 25 19-24

Overweight > 25 > 24

The input values required for the calculation will be the height and weight of the person, and their

gender.

Body mass index is calculated using metric units of metres and kilograms. We must provide an

option for the heights and weights be entered as feet/inches and stones/pounds in the imperial

system, then carry out a conversion:

 1 inch = 0.0254 metres

 1 pound = 0.454 kilogram

A possible algorithm for the program is given in the flowchart below.

106 Java Programming for A-level Computer Science

Y N

healthy
Y

N

N N

Y

input height

input weight

male?

underweight

output BMI

output weight advice

overweight

healthy

BMI > 25?

BMI >= 20?

Y

calculate total inches

= (feet * 12) + inches

height in

metres?

N

Y

convert to metres

1 inch = 0.0254 metres

weight in

kilograms?

N

calculate total pounds

= (stones * 14) + pounds Y

convert to kilograms

1 pound = 0.454 kilogram

overweight BMI > 24?
Y

underweight

stop

N

input gender

start

BMI = weight / (height)2

BMI >= 19?

 Chapter 4: Decision making in programs 107

Close all projects, then set up a New Project. Give this the name BMI, and ensure that the Create

Main Class option is not selected.

Return to the NetBeans editing page. Right-click on the BMI project, and select New / JFrame Form.

Give the Class Name as BMI, and the Package as BMIpackage:

Click the Finish button to return to the NetBeans editing screen.

 Right-click on the form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Click the Source tab above the design window to open the program code. Locate the main

method. Use the + icon to open the program lines and change the parameter “Nimbus” to

“Windows”.

Run the program and accept the main class which is offered. Check that a blank window appears

and has the correct size and colour scheme. Close the program and return to the NetBeans editing

screen. Click the Design tab to move to the form layout view.

Select the Combo Box component from the palette and drag and drop this on the form. Rename the

component as cmbGender. Go to the model property, and set the values as:

 male, female

108 Java Programming for A-level Computer Science

Add labels and text fields for entry of the person’s height. Rename the text fields as txtMetres,

txtFeet and txtInches.

We will allow the user to select either metric or imperial units for entry of the height. Let us first

assume that metric units will be used, so remove the tick from the editable property of the feet and

inches text fields.

Select the Button Group component from the palette and drag and drop this on the form. This is an

invisible component, so nothing appears on the form. Go to the Properties window and select the

Code tab, then reset the Variable Name to btnHeightUnits:

Add two radio buttons to the form and rename these as rbMetricHeight and rbImperialHeight. Set

the buttonGroup property for each of these buttons to btnHeightUnits. This will ensure that the

buttons operate together so only one of the options can be selected.

Add a tick to the selected property for the rbMetricHeight button:

 Chapter 4: Decision making in programs 109

Create a set of components in a similar way for the entry of the person’s weight:

 Add labels and text fields. Name the text fields as txtKilos, txtStones and txtPounds.

Remove the ticks from the editable property of the stones and pounds text fields.

 Add a buttonGroup component, and rename this as btnWeightUnits.

 Add two radio buttons and rename these as rbMetricWeight and rbImperialWeight. Set the

buttonGroup property for each of these buttons to btnWeightUnits. Add a tick to the

selected property for the rbMetricWeight button:

Complete the form by adding a button with the caption “Calculate BMI”, and a text area. Rename

these components as btnCalculate and txtOutput:

110 Java Programming for A-level Computer Science

When the program is running, it should be possible for the user to select either metric or imperial

units for entry of height and weight. When a change is made between metric and imperial units, the

appropriate text fields should become editable. We will arrange this now.

Select the rbMetricHeight radio button. Open the Events tab in the Properties window and locate

the stateChanged event. Select rbMetricHeightStateChanged from the drop down list:

Add lines of code which will detect which of the Height radio buttons is selected, and set the

editable properties of the text fields accordingly. We will also delete any previous text entry when a

text field becomes un-editable.

 private void rbMetricHeightStateChanged(javax.swing.event.ChangeEvent evt) {

 if(rbMetricHeight.isSelected()==true)
 {
 txtFeet.setText("");
 txtInches.setText("");

 txtMetres.setEditable(true);
 txtFeet.setEditable(false);
 txtInches.setEditable(false);
 }
 else
 {
 txtMetres.setText("");

 txtMetres.setEditable(false);
 txtFeet.setEditable(true);
 txtInches.setEditable(true);
 }

 }

Run the program. Select the radio button for metric height, and check that a value can be entered

in the metres text field, whilst the feet and inches text fields are not editable. Now select the radio

button for imperial height, and check that the feet and inches fields become editable.

Close the program and return to the NetBeans screen. Select the Design tab.

 Chapter 4: Decision making in programs 111

Select the rbMetricWeight radio button. Open the Events tab in the Properties window and locate

the stateChanged event. Select rbMetricWeightStateChanged from the drop down list.

Add program code to the method:

 private void rbMetricWeightStateChanged(javax.swing.event.ChangeEvent evt) {

 if(rbMetricWeight.isSelected()==true)
 {
 txtStones.setText("");
 txtPounds.setText("");

 txtKilos.setEditable(true);
 txtStones.setEditable(false);
 txtPounds.setEditable(false);
 }
 else
 {
 txtKilos.setText("");

 txtKilos.setEditable(false);
 txtStones.setEditable(true);
 txtPounds.setEditable(true);
 }

 }

Run the program again. Select the radio button for metric weight, and check that a value can be

entered in the kilograms text field, whilst the stones and pounds text fields are not editable. Now

select the radio button for imperial weight, and check that the stones and pounds fields become

editable.

Close the program and return to the NetBeans screen. Select the Design tab to display the form.

We can now begin work on calculation of the Body Mass Index.

Double click the “Calculate BMI” button to create a method.

Add definitions for local variables which will be needed in the calculation, and for output of the

results:

 private void btnCalculateActionPerformed(java.awt.event.ActionEvent evt) {

 double height, weight;
 int inches, feet, stones, pounds;
 int totalInches, totalPounds;
 String s="";
 double BMI;
 String advice;

 }

112 Java Programming for A-level Computer Science

We will add lines of program code to input the person’s height and display this in the text area in the
output section of the form. We must consider two situations:

 If the height is entered in metric units, this can be output directly as metres.

 If the user chooses to input the height as feet and inches, this must be converted to metres.
We will firstly calculate the total number of inches, then use a conversion factor:

 1 inch = 0.0254 metres

 private void btnCalculateActionPerformed(java.awt.event.ActionEvent evt) {
 double height, weight;
 int inches,feet, stones, pounds;
 int totalInches, totalPounds;
 String s="";
 double BMI;
 String advice;

 if (rbMetricHeight.isSelected()==true)
 {
 height=Double.parseDouble(txtMetres.getText());
 }
 else
 {
 inches=Integer.parseInt(txtInches.getText());
 feet=Integer.parseInt(txtFeet.getText());
 totalInches=feet*12 + inches;
 height=totalInches* 0.0254;
 }
 s += "Height: "+String.format("%.2f", height)+" metres \n";
 txtOutput.setText(s);

 }

Run the program and check that the output of heights is handled correctly:

 Chapter 4: Decision making in programs 113

Close the program and return to the editing screen. Add a further section of code to the

btnCalculateActionPerformed method to enter and display weights, converting from stones and

pounds to kilograms if necessary:

 if (rbMetricHeight.isSelected()==true)
 {
 height=Double.parseDouble(txtMetres.getText());
 }
 else
 {
 inches=Integer.parseInt(txtInches.getText());
 feet=Integer.parseInt(txtFeet.getText());
 totalInches=feet*12 + inches;
 height=totalInches* 0.0254;
 }
 s += "Height: "+String.format("%.2f", height)+" metres \n";

 if (rbMetricWeight.isSelected()==true)
 {
 weight=Double.parseDouble(txtKilos.getText());
 }
 else
 {
 stones=Integer.parseInt(txtStones.getText());
 pounds=Integer.parseInt(txtPounds.getText());
 totalPounds=stones*14 + pounds;
 weight=totalPounds* 0.454;
 }
 s += "Weight: "+String.format("%.1f", weight)+" kilograms \n";

 txtOutput.setText(s);
 }

Run the program and check that the output of weights is correct:

114 Java Programming for A-level Computer Science

Close the program and return to the editing screen.

We now have the height and weight data in the correct metric units for calculation of the Body Mass
Index. Add the formula to do this:

 if (rbMetricWeight.isSelected()==true)
 {
 weight=Double.parseDouble(txtKilos.getText());
 }
 else
 {
 stones=Integer.parseInt(txtStones.getText());
 pounds=Integer.parseInt(txtPounds.getText());
 totalPounds=stones*14 + pounds;
 weight=totalPounds* 0.454;
 }
 s += "Weight: "+String.format("%.1f", weight)+" kilograms \n";

 BMI = weight/(height*height);

 s += "Body Mass Index: "+String.format("%.1f", BMI)+" \n";

 txtOutput.setText(s);
 }

Run the program and test the BMI calculation. To verify that the program is working correctly, carry

out the calculations a second time using a calculator or spreadsheet:

 Chapter 4: Decision making in programs 115

Close the program and return to the editing screen.

The final task is to link Body Mass Index and gender, to give advice on whether the person is

overweight, in the healthy range, or underweight. This can be done by checking whether “male” or

“female” is selected in the cmbGender combo box, then using a series of IF...THEN…ELSE commands

to check BMI value against the specified ranges for overweight, healthy or underweight:

 BMI = weight/(height*height);

 s += "Body Mass Index: "+String.format("%.1f", BMI)+" \n";

 if (cmbGender.getSelectedItem().equals("male"))
 {
 if (BMI > 25)
 {
 advice="Overweight";
 }
 else
 {
 if (BMI >=20)
 {
 advice ="Healthy weight";
 }
 else
 {
 advice ="Underweight";
 }
 }
 }
 else
 {
 if (BMI > 24)
 {
 advice="Overweight";
 }
 else
 {
 if (BMI >=19)
 {
 advice ="Healthy weight";
 }
 else
 {
 advice ="Underweight";
 }
 }
 }

 s += advice;

 txtOutput.setText(s);
 }

116 Java Programming for A-level Computer Science

This completes the project. Run the program and check that correct advice is given for men and

women with a range of different heights and weights:

